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E-mail: francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it and
leyvraz@fis.unam.mx

Received 17 December 2008, in final form 12 February 2009
Published 13 March 2009
Online at stacks.iop.org/JPhysA/42/145202

Abstract

Given an arbitrary (autonomous) Hamiltonian h(�p; �q), where the N
components pn of the N-vector �p are the canonical momenta, the N components
qn of the N-vector �q are the corresponding canonical coordinates and N is
an arbitrary positive integer, we show how to manufacture (autonomous)
Hamiltonians H̃ (

−→̃
p , P̃ ; −→̃

q , Q̃), featuring the N + 1 canonical momenta p̃n, P̃

and the corresponding canonical coordinates q̃n, Q̃, and having the following
two properties: (i) the generic solutions of H̃ (

−→̃
p , P̃ ; −→̃

q , Q̃) are periodic—
entailing that the dynamics yielded by this Hamiltonian H̃ (

−→̃
p , P̃ ; −→̃

q , Q̃)

is (maximally) superintegrable, namely, it features 2N + 1 functionally
independent constants of motion, N + 1 of which in involution. (ii) On the
manifold characterized by the condition H̃ (

−→̃
p , P̃ ; −→̃

q , Q̃) = 0, the coordinates
P̃ and Q̃ evolve trivially, P̃ (t) = P̃ (0) and Q̃(t) = Q̃(0)+t, while the evolution
of the 2N coordinates p̃n(t), q̃n(t) is that determined by the (arbitrary!)
Hamiltonian h(

−→̃
p ; −→̃

q ). This is related to an earlier finding by Bolsinov and
Taimanov.

PACS numbers: 02.30.Ik, 45.20.Jj

1. Introduction

Almost a decade ago Bolsinov and Taimanov [1, 2] presented, in a geometrical setting,
a remarkable finding, the description of which can be reported in the simple language of
dynamical systems as follows: it is the example of a Hamiltonian dynamical system the
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generic time-evolution of which is integrable, except when it is restricted to some special
invariant manifold of the system, on which it is instead nonintegrable. More specifically, the
motion on that special manifold is equivalent to a torus automorphism, which is an Anosov
system and therefore has strongly chaotic properties. This finding was unexpected and perhaps
it was considered surprising by many—although of course it did not violate any established
notion. It entailed the possibility to embed a nonintegrable dynamics inside an integrable
one—of course with a proper significance of the term ‘to embed’, as loosely entailed by the
previous discussion and precisely defined below.

On the other hand quite recently, in the context of Hamiltonian dynamics, we have
shown how to extend an arbitrary (autonomous) Hamiltonian so that the (also autonomous)
Hamiltonian thereby obtained, which generally features very few additional variables, exhibits
the following two properties: (i) all the orbits yielded by its dynamics are periodic with
arbitrarily assigned periods (possibly all equal, so that the evolution is isochronous), entailing
that this extended Hamiltonian is maximally superintegrable, namely, it has the maximal
number of (functionally independent) conserved quantities; (ii) when restricted to the original
variables, the generic dynamics yielded by the extended Hamiltonian essentially coincides (up
to a rescaling of the time variable) with that yielded by the original (unmodified) Hamiltonian,
over time intervals which are short relative to the (arbitrarily assigned) periodicity of the
extended Hamiltonian [3–6]. When the result by Bolsinov and Taimanov outlined above
was brought to our attention, we realized that, via an approach similar to that underlying
our findings as just described, it is possible to provide an analogous, but considerably more
general, result. Its essence is conveyed by the abstract of this paper (and see also remark 3).
A precise formulation of it, and its proof, is provided in the following section. An explicit
example—with the original, arbitrary Hamiltonian being itself integrable but generally not
superintegrable—is provided in the last section. Simple as this example is, it sheds light on
a natural question evoked by our finding, namely, how some of the constants of motion of
the extended superintegrable system disappear when its evolution is restricted to the invariant
manifold on which its dynamics is instead nonintegrable (or at least less integrable).

Let us end this introductory section by emphasizing that the possibility to embed
an arbitrary Hamiltonian dynamics in a superintegrable (or just integrable) Hamiltonian
dynamics should not be expected to simplify the treatment of the dynamics entailed by an
arbitrary Hamiltonian; although it is conceivable that in some case it might be helpful to shed
some light on some of its properties—as illustrated by the simple example treated below.

2. Results

Theorem. Let the Hamiltonian H(P ;Q), depending on the two canonical variables P and
Q, have the following two properties: (i) for P(0) = 0, this Hamiltonian yields the simple
solution

P(t) = 0, Q(t) = Q(0) + t, (1a)

entailing that the relation

P = 0 (1b)

identifies an invariant manifold of this Hamiltonian; (ii) for P(0) �= 0, the evolution of
the canonical variables is instead periodic, namely, there exists a nonnegative period T—
depending on the initial data P(0) and Q(0)—such that, for all time t,

P(t + T ) = P(t), Q(t + T ) = Q(t). (2)

Note that such Hamiltonians certainly exist; an example is exhibited below.

2



J. Phys. A: Math. Theor. 42 (2009) 145202 F Calogero and F Leyvraz

Let h(�p; �q) be another Hamiltonian, having as canonical momenta the N components pn

of the N-vector �p and as canonical coordinates the N components of the N-vector �q, and such
that the time evolution of these canonical variables exists globally (for all time); aside for
this mild restriction (and possibly additional restrictions guaranteeing the smoothness of the
time-dependence of this evolution, see below), this Hamiltonian h(�p; �q) is arbitrary (with N
an arbitrary positive integer). Note that, here and hereafter, the index n runs from 1 to N.

Finally let us introduce a third Hamiltonian H̃ (
−→̃
p , P̃ ; −→̃

q , Q̃), having the N + 1 momenta
p̃n, P̃ and the corresponding N + 1 coordinates q̃n, Q̃ as its canonical variables, and being
defined as follows in terms of the two Hamiltonians H(P,Q) and h(

−→̃
p ; −→̃

q ) introduced above:

H̃ (
−→̃
p , P̃ ; −→̃

q , Q̃) = H(P̃ + h(
−→̃
p ; −→̃

q ); Q̃). (3)

Here and hereafter the superimposed tilde is a reminder that the time evolution of the
corresponding quantities is determined by this Hamiltonian H̃ .

Note that this definition of the Hamiltonian H̃ implies that

c = h(
−→̃
p ; −→̃

q ) (4)

is a constant of motion for the evolution it entails, hence the relation

P̃ + c = P̃ + h(
−→̃
p ;−→̃

q ) = 0 (5)

identifies an invariant manifold for this Hamiltonian H̃ (�p, P̃ ; −→̃
q , Q̃) (see (1b) and (3)).

Then for any initial data off this invariant manifold, namely such that P̃ (0) +
h(

−→̃
p (0); −→̃

q (0)) �= 0, the time evolution yielded by this Hamiltonian, (3), is completely
periodic with a period T̃ depending only on the two initial data P̃ (0) + h(

−→̃
p (0); −→̃

q (0)) and
Q̃(0),

P̃ (t + T̃ ) = P̃ (t), Q̃(t + T̃ ) = Q̃(t), (6a)

p̃n(t + T̃ ) = p̃n(t), q̃n(t + T̃ ) = q̃n(t); (6b)

while for initial data on the invariant manifold (5)—i.e., for arbitrary initial data −→̃
p (0) and−→̃

q (0) with P̃ (0) assigned, P̃ (0) = −h(
−→̃
p (0); −→̃

q (0))—the time evolution of the 2N variables
p̃n, q̃n is exactly the same as that yielded by the (arbitrary!) Hamiltonian h, i.e. by the
equations of motion

·
p̃n = −∂h(

−→̃
p ; −→̃

q )

∂q̃n

,
·
q̃n = ∂h(

−→̃
p ; −→̃

q )

∂p̃n

. (7)

This theorem, the proof of which is provided immediately below, details the precise meaning
of the claim made in the title of this paper, in particular the significance of the term ‘embed’
used there.

Proof. The 2N + 2 equations of motion yielded by the Hamiltonian (3) read as follows:

·
P̃ = −∂H(P̃ + c; Q̃)

∂Q̃
,

·
Q̃ = ∂H(P̃ + c; Q̃)

∂P̃
, (8a)

·
p̃n = −∂H(P̃ + c; Q̃)

∂P̃

∂h(
−→̃
p ; −→̃

q )

∂q̃n

,
·
q̃n = ∂H(P̃ + c; Q̃)

∂P̃

∂h(
−→̃
p ; −→̃

q )

∂p̃n

. (8b)

Hence, via the second equation (8a), the equations of motion (8b) can be rewritten as follows:

·
p̃n = −

·
Q̃

∂h(
−→̃
p ; −→̃

q )

∂q̃n

,
·
q̃n =

·
Q̃

∂h(
−→̃
p ; −→̃

q )

∂p̃n

. (9)

3
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Hence they clearly entail

p̃n(t) = pn(Q̃(t)), q̃n(t) = qn(Q̃(t)). (10)

Let us re-emphasize that, for notational convenience, we denote as p̃n(t), q̃n(t) the dynamical
variables whose time-evolution is determined by the Hamiltonian H̃ , see (3)—i.e., p̃n(t) and
q̃n(t) are the solutions of the Hamiltonian equations (8) or, equivalently, (9) with (8a)—
while pn(t), qn(t) denote the dynamical variables whose time-evolution is determined by the
Hamiltonian h(�p; �q) (i.e., pn(t) and qn(t) are the solutions of the Hamiltonian equations (7)
with all tildes removed); and of course the evolution of Q̃(t) is determined by the Hamiltonian
H(P̃ + c, Q̃), see (8a) with the constant of motion c given by (4), while the initial data
pn(0), qn(0) are determined in terms of the initial data p̃n(0), q̃n(0) by the relations (10) at
t = 0.

It is then plain that the assumptions made above on the dynamics yielded by the
Hamiltonian H entail the validity of the theorem: indeed if Q̃(t) is a periodic function of
time, the relation (10) implies that all the variables p̃n(t), q̃n(t) are also periodic (with the
same period), while if the time evolution of Q̃(t) is given by the second formula (1a), the
relation (10) implies that the evolution of p̃n(t), q̃n(t) coincides (up to an irrelevant constant
translation of the time variable) with the evolution of pn(t), qn(t). �

Remark 1. All the time evolutions yielded by the Hamiltonian H̃ , see (3)—except for
those restricted to the invariant manifold of codimension 1 characterized by the relation (5)—
are completely periodic, see (6). Hence this Hamiltonian H̃ is maximally superintegrable,
featuring 2N + 1 functionally independent constants of motion. While we believe this
implication to be well known, we did provide a proof of it in [4]. Note that, while that
proof was given for isochronous systems, it is equally valid for systems yielding completely
periodic evolutions—namely evolutions, such as those relevant here, in which all the degrees
of freedom evolve periodically, entailing that the corresponding trajectories are closed—even
if the periods associated with different trajectories are not equal, namely the motions are
periodic but not isochronous. And let us recall that from the usual proof of the Darboux’
theorem [7] it follows that, out of the 2N + 1 constants of motion possessed by this system,
N + 1 constants of motion can be taken in involution. Of course, in order to be able to
define the Poisson bracket between the various constants of motion [4], we require that they
be twice differentiable, a property which follows from mild smoothness assumptions on the
Hamiltonian h, which we do not pursue further here.

Remark 2. As mentioned in the formulation of the theorem there are many Hamiltonians
H(P,Q) yielding evolutions that satisfy the requirements specified in the (first part of the)
theorem. Clearly the requirement that P = 0 be an invariant manifold characterized by the
simple evolution (1a) is satisfied by any Hamiltonian such that

for P = 0,
∂H(P,Q)

∂P
= 1,

∂H(P,Q)

∂Q
= 0; (11)

while the requirement that, for P �= 0, all the trajectories yielded by this Hamiltonian be closed
can be enforced by making sure that all constant-energy contours of H(P,Q) are bounded.

A specific Hamiltonian H(P,Q) having these properties reads—of course, consistently
with the conditions (11)—as follows:

H(P,Q) = P − P 2(Q2 + 1). (12a)

Hereafter, we use, for the constant value of the Hamiltonian on the trajectory under
consideration, the notation

H(P,Q) = sin2 θ

4
, (12b)

4
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where θ runs from 0 to 2π. (The quadrant to which θ belongs will be determined below). We
thereby restrict attention to values of the Hamiltonian in the interval 0 � H(P,Q) � 1/4.

It is moreover easily seen that for H(P,Q) = θ = 0 one gets just the evolution (1a),
while for H(P,Q) = 1/4, θ = π/2 or θ = 3π/2 one gets the equilibrium configuration
P = 1/2,Q = 0 (see also below).

The equation of motion for Q(t) yielded by this Hamiltonian (12a) reads

Q̇ = 1 − 2P(Q2 + 1), (13a)

namely, via (12a) and (12b),

Q̇ =
√

1 − (Q2 + 1) sin2 θ (13b)

yielding the solution

Q(t) = cot θ sin[(t + t0) sin θ ], (14a)

and correspondingly, via (12),

P(t) = 1 − cos θ cos[(t + t0) sin θ ]

2{1 + cot2 θ sin2[(t + t0) sin θ ]} . (14b)

These formulae contain two constants, θ and t0, hence they provide the general solution of
the equations of motion yielded by the Hamiltonian (12a). In the initial-value problem, the
constant angle θ (including the quadrant it belongs to) and the constant t0 (up to an irrelevant
mod(2π/ sin θ) ambiguity) are determined in terms of the initial data Q(0) and P(0) by the
requirement that these formulae, (14), hold at t = 0. And of course the periodic character of
this solution is plain.

Remark 3. It is, of course, possible to modify the Hamiltonian H̃ (say, by adding to it H̃ 2

times a function of the other constants of motion) so that the resulting dynamics becomes
integrable rather than superintegrable, but does not change at all on the invariant manifold
H̃ = P̃ = 0. This justifies the parenthetical insert in the title of this paper.

3. An example

We complete this paper by reporting a simple example, characterized by the Hamiltonian
H(P,Q) (12a), and by the assignment N = 2 with the rather trivial Hamiltonian

h(p1, p2; q1, q2) = 1

2

2∑
n=1

(
p2

n + ω2
nq

2
n

)
. (15)

The explicit solution of this Hamiltonian reads of course as follows:

qn(t) = q(0) cos(ωnt) + pn(0)
sin(ωnt)

ωn

, (16a)

pn(t) = p(0) cos(ωnt) − qn(0)ωn sin(ωnt). (16b)

Here and hereafter the index n runs from 1 to 2, for definiteness we assume the two constants
ω1 and ω2 to be positive, ω1 > 0, ω2 > 0, and we will denote with α their ratio, α = ω1/ω2.
Note that these formulae entail the relations

pn(t) ± iωnqn(t) = [pn(0) ± iωnqn(0)] exp(±iωnt). (16c)

This Hamiltonian h, see (15), is of course integrable, since the two quantities

cn = p2
n + ω2

nq
2
n (17)

5
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provide obviously two constants of motion. If and only if the constant α is a rational number,

α = ω1

ω2
= r

s
, (18)

with r and s, here and hereafter, two positive coprime integers, this system is moreover
superintegrable, since then the quantity

C = [p1(t) + iω1q1(t)]
r [p2(t) − iω2q2(t)]

s , (19)

which is obviously time-independent (see (16c) and (18)), provides a third one-valued globally
defined constant of motion. In fact the real and imaginary parts of this quantity—a polynomial
in the four dependent variables p1, p2, q1, q2—provide two constants of motion, but obviously
only three out of the four real constants of motion c1, c2, Re [C] , Im [C] are functionally
independent, indeed clearly

|C|2 = (Re[C])2 + (Im[C])2 = cr
1c

s
2, (20)

see (19) and (17).
Let us now consider the Hamiltonian H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) defined by (3) with (15).

As implied by the treatment provided in the preceding section (see (14) and (10)) the solution
of its equations of motion reads as follows:

Q̃(t) = cot θ̃ sin[(t + t0) sin θ̃ ], (21a)

P̃ (t) = 1 − cos θ̃ cos[(t + t0) sin θ̃ ]

2{1 + cot2 θ̃ sin2[(t + t0) sin θ̃ ]} , (21b)

q̃n(t) = q̃(0) cos[ωnQ̃(t)] + p̃n(0)
sin[ωnQ̃(t)]

ωn

, (21c)

p̃n(t) = p̃(0) cos[ωnQ̃(t)] − q̃n(0)ωn sin[ωnQ̃(t)], (21d)

with the constant θ̃ related, to the Hamiltonian H̃ (
−→̃
p , P̃ ; −→̃

q , Q̃) defined by (3) with (15), by
the formula (see (12b))

sin2 θ̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) = 4H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃). (22)

Note that—to get a more explicit expression of the solution—the variable Q̃(t) in (21c) and
(21d) should be replaced by its expression (21a); and that thereby these solution formulae,
(21), imply the relations

p̃n(t) ± iωnq̃n(t) = [p̃n(0) ± iωnq̃n(0)] exp{±iωn cot θ̃ sin[(t + t0) sin θ̃ ]}. (23)

We know from the results of the preceding section that the system characterized by this
Hamiltonian H̃ is superintegrable, featuring five globally-defined one-valued functionally-
independent constants of motion: indeed an explicit definition of five such constants of
motion is provided by the Hamiltonian H̃ itself and by the real and imaginary parts of the two
complex quantities

C̃n(p̃n; q̃n, Q̃) = (p̃n + iωnq̃n) exp(−iωnQ̃), (24)

whose time-independence is evident, see (23) and (21a). Two other constants of motion are

c̃n = p̃2
n + ω2

nq̃
2
n, (25)

but they are not independent, since clearly c̃n = |C̃n|2.
Let us emphasize that this property of superintegrability holds quite independently of

the ratio α being rational or irrational. But let us also note that these five constants of
motion are not very convenient to understand the consistency of this fact with the property

6
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of the ‘embedded’ dynamics yielded by the Hamiltonian h, see (15), to possess three
constants of motion if α is a rational number but only two if α is not rational. Indeed
the embedding procedure—as described above: entailing the restriction of the dynamics
yielded by H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) to the invariant manifold characterized by H̃ = P̃ = 0
and the replacement of the canonical variable Q̃ with its time evolution on that manifold,
Q̃(t) = Q̃(0) + t (see (1a)), thereby causing the reduction from the six canonical variables
featured by the Hamiltonian H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) to the four canonical variables featured
by the Hamiltonian h(p̃1, p̃2; q̃1, q̃2)—clearly entails that the two complex constants of
motion C̃n(p̃n; q̃n, Q̃) are no more suitable to play the role of constants of motion for the
dynamics yielded by the Hamiltonian h(p̃1, p̃2; q̃1, q̃2). Indeed they—while being, of course,
still constant when the canonical variables p̃1, p̃2; q̃1, q̃2 evolve according to the dynamics
yielded by the Hamiltonian h(p̃1, p̃2; q̃1, q̃2)—feature now an explicit time-dependence in
their definition, reading

C̃n(p̃n; q̃n; t) = (p̃n + iωnq̃n) exp{−iωn[Q̃(0) + t]}. (26)

Since the main purpose of the example we are discussing is to display how this transition
comes about—the transition from the superintegrable dynamics featured for arbitrary real α

by the Hamiltonian H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) defined by (3) with (15), to the dynamics featured
by the embedded Hamiltonian h(p̃1, p̃2; q̃1, q̃2) being superintegrable if α is rational but being
only integrable if α is irrational—let us now identify a more convenient set of five constants
of motion associated with the Hamiltonian H̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃), assuming to begin with
that θ̃ �= 0 mod(π). Three of these constants are of course again provided by the Hamiltonian
H̃ itself and by the two constants c̃n (see (25)). To manufacture two other constants of motion
we use the technique suggested by the proof provided in the appendix of [4], namely we
take the time-average over the (closed) trajectory of our system, see (21), of the following,
appropriately chosen, function of the canonical variables: exp[(p̃1 + iω1q̃1) + (p̃2 − iω2q̃2)].
We thus get (using (23)) the following (complex) constant of motion:

C̃(p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) = sin θ̃

2π

∫ 2π/ sin θ̃

0
dt exp{(p̃1 + iω1q̃1) exp[iω1 cot θ̃ sin(t sin θ̃ )]

+ (p̃2 − iω2q̃2) exp[−iω2 cot θ̃ sin(t sin θ̃ )]}. (27a)

Here of course the constant of motion θ̃ is itself a function of the canonical variables, see for
instance (22).

We now change the integration variable from t to τ = t sin θ̃ , power-expand the ‘outer’
exponential, use the binomial expansion for the powers thereby obtained, and end up with the
following expression:

C̃(p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃) =
∞∑

m1,m2=0

(p̃1 + iω1q̃1)
m1(p̃2 − iω2q̃2)

m2

m1!m2!

× J0[(m1ω1 − m2ω2) cot θ̃ (p̃1, p̃2, P̃ ; q̃1, q̃2, Q̃)], (27b)

where we used the standard representation of the zeroth-order Bessel function,

J0(x) = 1

2π

∫ 2π

0
dτ exp(ix sin τ). (28)

The real and imaginary parts of this quantity C̃ provide the two additional constants of motion;
they are entire functions of the canonical coordinates, since the sum over the two indices m1,m2

clearly converges absolutely and uniformly in θ̃ (recall that |J0(x)| � 1 for all real values of x).
And it is as well plain that these two constants are functionally independent among each other

7
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and with respect to the other three constants of motion, as identified above (the reader who
doubts this is invited to verify this assertion by focussing on the behaviour of the system in the
infinitesimal neighbourhood of the equilibrium configuration P̃ = 1/2, Q̃ = 0, p̃n = q̃n = 0).
The superintegrability of the Hamiltonian H̃ (

−→̃
p , P̃ ; −→̃

q , Q̃) defined by (3) with (15) is thereby
confirmed, at least for all motions off the invariant manifold M characterized by θ̃ = 0
mod(π).

The final issue to be investigated is the fate of these five constants of motion featured by
this Hamiltonian H̃ , when the motion is restricted to the invariant manifold M, in particular to
what extent they are inherited by the dynamics associated with the embedded Hamiltonian h,
see (15). First of all, of the three constants of motion c̃1, c̃2 and H̃ only the first two survive,
since clearly H̃ vanishes identically, see (22).

Let us then look at the constant of motion C̃, see (27b), in the limit as θ̃ → 0 mod(π),

hence of course cot θ̃ → ∞.
Assume first that the two quantities ω1 and ω2 are not congruent—namely, their ratio is

not a rational number. Then the argument of the Bessel function in the right-hand side of (27b)
never vanishes, hence the divergence of cot θ̃ entails that the Bessel function vanishes (since
J0(∞) = 0), and so does the entire sum (since every term of it vanishes, and the sum converges
absolutely and uniformly in θ̃). Hence C̃ disappears as θ̃ → 0 mod(π), and we are only left
with the two constants of motion c̃1 and c̃2, consistently with the fact that the Hamiltonian
h(p̃1, p̃2; q̃1, q̃2), see (15), is—in this case, with noncongruent ω1 and ω2—integrable but not
superintegrable.

Assume instead that the two quantities ω1 and ω2 are congruent, say (consistently with
(18)) ω1 = rω and ω2 = sω with r and s two positive integers and ω an arbitrary positive
number. Then, whenever in the sum in the right-hand side of (27b) m1 = sm and m2 = rm,

the argument of the Bessel function vanishes, hence since J0(0) = 1 we get

C̃(p̃1, p̃2; q̃1, q̃2) =
∞∑

m=0

[(p̃1 + iω1q̃)r (p2 − iω2q̃2)
s]m

(sm)!(rm)!
, (29)

where we have omitted the rest of the sum (which clearly vanishes as θ̃ → 0 mod(π), due to the
same argument given above). This of course entails that the quantity (p̃1 +iω1q̃)r (p2 − iω2q̃2)

s

is itself a constant of motion, recovering thereby the superintegrability of the dynamics yielded
by h(p̃1, p̃2; q̃1, q̃2) (as discussed above, compare indeed this constant of motion with (19)).
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